Academic Research

Mental Health Risk and Resilience in Service Members Deployed to Combat Zones

Kate Yurgil, Assistant Professor of Psychology, pursues multidisciplinary research that integrates measures of human behavior, cognition, and neurophysiology. Her most recent work, to be funded through a Department of Defense Congressionally Directed Medical Research (CDMR) Program Neurosensory and Rehabilitation Research Award, focuses on tinnitus (i.e. ringing of the ears) and hearing loss in relation to blast injuries, which have been deemed the signature wounds of the recent wars in Iraq and Afghanistan. An estimated 12-23% of returning service members attest to a traumatic brain injury, and among those exposed to explosions, up to 77% sustain permanent hearing loss and 60-75% report tinnitus. Dr. Yurgil will collaborate with Dr. Dewleen Baker, Research Director at Veterans Affairs Center of Excellence for Stress and Mental Health in San Diego, CA and Professor of Psychiatry at University of California San Diego, the PI, who directs multiple research programs on post-traumatic stress disorder and traumatic brain injury. Drs. Yurgil and Baker, together with a team of physicians, scientists, and clinicians, integrate biological, physiological, psycho-social, and neuroimaging techniques to investigate predictors of mental health risk and resilience in service members deployed to combat zones.

Behavioral Neuroendocrinology Research

Dr. Grissom's research focuses on understanding sex differences in stress and anxiety across the lifespan, and how these differences impact learning and memory.  Elevations in stress hormones at different critical developmental timepoints impact learning and memory in males and females differently.  Increased anxiety resulting from stress exposure impacts learning style in a sex-specific manner as well. Dr. Grissom's current work uses rodent models to examine how elevations in stress hormones at different critical developmental periods impact measures of anxiety, and how this, in turn, alters learning and memory in males and females via changes in cell structure and function in related brain areas.